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Abstract—Kinetic resolution of poly(ethylene glycol)(PEG)-supported carbonates by enzymatic hydrolysis is discussed. Water-
soluble carbonates are prepared by immobilization of racemic secondary alcohols onto low-molecular weight monomethoxy
PEG (MPEG) through a carbonate linker. Porcine pancreas lipase (PPL) enantioselectively catalyzes the hydrolysis of the substrates
to give optically active compounds. In this system, the separation of the resulting alcohols and the remaining substrates is achieved
by an extraction process without laborious column chromatography. The carbonates are easily hydrolyzed with K2CO3 to afford the
corresponding alcohols.
� 2004 Elsevier Ltd. All rights reserved.
Enzyme-mediated kinetic resolution of racemic alcohols
and esters is one of the practical methods for the prepa-
ration of optically active compounds, and a great num-
ber of examples have been published.1 Although, in the
reaction process, the products and the substrates could
be separated mainly by column chromatography, the
most tedious and wasteful purification step is the bottle-
neck to a sustainable and large scale production. In or-
der to resolve this irritating problem, several examples
of an easy separation have been published,2–8 but facile
and efficient methods are still desired. On the other
hand, organic synthesis based on polymer supports has
made rapid progress. Although enzymatic transforma-
tion on a polymer support is also of contemporary inter-
est and can be potentially useful for the easy isolation of
the products, there have been relatively few reports on
polymer-supported reactions by enzymes so far.7–11

Recently, poly(ethylene glycol) (PEG) has been recog-
nized as an inexpensive and convenient water-soluble
polymer.12,13 We have noted that a PEG-supported
strategy could be suitable for enzymatic transformation
because the broad solubility of PEG facilitates the ana-
lysis of the PEG-supported substrates and could greatly
enhance the reactivity under homogeneous condi-
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tions.14–16 In this paper, we report the first example of
a hydrolase-mediated kinetic resolution of PEG-sup-
ported substrates with a carbonate linker to afford the
corresponding optically active compounds, and the
method enables us to achieve the easy separation of
the resulting alcohols and the remaining substrates by
an extraction process without laborious column
chromatography.

We used low-molecular weight monomethoxy PEG
(MPEG, av MW 750 or 550), which had the desired sol-
ubility profile, as the matrix because the loading capa-
city (1.3 or 1.8mmol/g, respectively) is higher than that
of MPEG5000 (av MW 5000), which has been used in
many previous reports. Also, the terminal methyl group
becomes a reference for the determination of the loading
ratio in the reaction steps.17

For a screening test of enzymes, we chose the substrate
dl-1a (MPEG750), which was afforded by a coupling of
racemic 4-benzyloxy-2-butanol (dl-2) with MPEG750–
OH through a carbonate linker. The carbonate is a typ-
ical linker for organic synthesis on a polymer support
and can be easily constructed.18,19 The substrate dl-1
was readily prepared as shown in Scheme 1. The reac-
tion of dl-2 with N,N 0-carbonyldiimidazole in CH2Cl2
at rt proceeded to give the corresponding dl-3. Immobi-
lization of dl-3 onto MPEG–OH was carried out with
DMAP in DMF at 130 �C to afford nearly pure
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MPEG750-supported dl-1a, which was identified by
NMR analysis, in 67% yield.20,21 In the same way,
MPEG550-supported dl-1b was also prepared.

In the first screening test using 12 commercially availa-
ble enzymes,22 the selection of the enzyme was per-
formed on the basis of hydrolytic activity without
taking enantioselectivity into account by examining the
production of 2 using thin layer chromatography. In
the second screening, we then focused on the enantio-
selectivity of the hydrolysis. Finally, porcine pancreas
lipase (PPL, EC 3.1.1.3, Type II from Sigma) was found
to be the best enzyme. In a typical experiment, 200mg of
dl-1a (sub. concn 5mM) and 50mg of PPL were added
to 40mL of 0.1M sodium phosphate buffer (pH 6.5)
and incubated at 30 �C for 24h. In this case, not only
the product 2 but also the remaining 1a were extracted
with AcOEt.23 After evaporation, the mixture was
passed through a pad of silica gel (ca. 1–2g) with hex-
ane/AcOEt (3/1) as the first eluent to give the alcohol
2.24 The MPEG-supported 1a was eluted with AcOEt/
MeOH (3/1). The ee of 2 was determined by HPLC anal-
ysis (Chiralcel OD-H, Daicel Chemical Industries, Ltd),
and a similar analysis of 2 derived from 1a with K2CO3

was also performed (Table 1). Under the reaction condi-
tions, the reaction of dl-1a proceeded with high enantio-
selectivity (conv = 0.29, E value = 23)25 to afford
optically active (S)-1a (50%, 36% ee) and (R)-2 {28%,
89% ee; ½a�26D � 12:2 (c 0.24, MeOH)}. The absolute con-
figurations of the products were determined by compar-
Table 1. Enantioselective hydrolysis of carbonates 1 and 4 with PPLa
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pH 6.5 buffer
24 h

(Sdl-1 and 4

Substrate R Temp (�C) Carbonate

Yieldb (%)

1a MPEG750 30 50

1b MPEG550 30 54

1b MPEG550 10 76

4 Me 30 65

a The reaction was performed using 5mM of the substrate with PPL in 0.1M
bDetermined by its weight on the basis of the weight of the racemic substra
c Determined by HPLC analysis after the hydrolysis of the carbonate.
d Determined by HPLC analysis.
e Calculated by ee(carbonate)/[ee(carbonate) + ee(alcohol)].
f Calculated by ln[(1�conv)(1�ee(carbonate))]/ln[(1�conv)(1 + ee(carbonate)
ing the optical rotation of 2 with that of an authentic
sample {½a�27D þ 19:0 (c 0.95, MeOH)} derived from
ethyl (S)-3-hydroxybutanoate. As expected, the reaction
of lower molecular weight MPEG550-supported 1b also
proceeded with high enantioselectivity (conv = 0.35, E
value = 28). In the reaction of dl-1b at 10 �C, the E value
was up to 32 and (R)-2 with 93% ee was obtained,
although the conversion was apparently decreased.
Interestingly, the substrate dl-4 (R = Me), which was
not supported on MPEG, was also hydrolyzed with
PPL, but the enantioselectivity was very low (E va-
lue = 1.4). These results indicate that the hydrophilic
MPEG matrix could change the physical property of
the alcohol 2 and that the substrate would favorably
fit the enzyme active site.

The suitable water solubility of the MPEG-supported
substrate enables us to establish a more facile separation
of the resulting alcohol 2 and the remaining substrate
1; this procedure is illustrated in Scheme 2. After the
enzymatic reaction, the first extraction process was
performed with hexane. In this step, only the alcohol 2
was selectively extracted into the hexane layer. In the
following second extraction with AcOEt, the substrate
1 was then successfully obtained in the organic layer
while MPEG–OH, which was removed from 1,
remained in the aqueous layer. The yields and the ees
of the compounds were comparable to those obtained
from the separation method using a pad of silica gel
mentioned above.
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Table 2. Enantioselective hydrolysis of carbonates 5 with PPLa
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Substrate R1 R2 Carbonate 5 Alcohol 6 Conve Ef

Yield (%)b ee (%)c Yield (%) ee (%)d

5a CH3 Ph 36 95 31 77 0.55 29

5b CH3 CH2CH2Ph 37 23 47 27 0.46 2

5c Vinyl CH2CH2OBn 47 56 41 80 0.41 16

a The reaction was performed using 5mM of dl-5 with PPL in 0.1M phosphate buffer (pH6.5) for 24h.
bDetermined by its weight on the basis of the weight of the racemic substrate.
c Determined by HPLC analysis after the hydrolysis of the carbonate.
d Determined by HPLC analysis.
e Calculated by ee(5)/[ee(5) + ee(6)].
f Calculated by ln[(1�conv)(1�ee(5))]/ln[(1�conv)(1 + ee(5)].
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We applied this procedure to several substrates sup-
ported on MPEG550 under the same conditions, and
the results are shown in Table 2. In all cases, the alcoh-
ols 6 and the substrates 5 were successfully obtained by
the two-step extraction procedure as expected. While the
reaction of dl-5b (R1 = Me, R2 = CH2CH2Ph) showed a
low enantioselectivity (E value = 2), the other substrates
were enantioselectively hydrolyzed. In particular, the
hydrolysis of 1-phenylethanol derivative 5a (R1 = Me,
R2 = Ph) proceeded with higher enantioselectivity
(conv = 0.55, E value = 29) to afford the corresponding
alcohol (R)-6a (77% ee) and (S)-5a (95% ee) in 31%
and 36% yields, respectively.

In conclusion, we have demonstrated for the first time
the hydrolase-mediated kinetic resolution of racemic
carbonates on a low-molecular weight MPEG support to
afford the optically active compounds. In our method,
separation of the resulting alcohols from the remaining
substrates was achieved by an extraction process with-
out time- and solvent-consuming column chromatogra-
phy. Further investigations are now in progress.
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